Preservation Photos #166

20130122-123423.jpg
Ready for winter in Bellows Falls, Vermont. The good smell of a wood stove is unmistakable. Piles of chopped, stacked wood is common in this cold climate.

Preservation Photos #101

Wood siding etched to look like stone blocks rather than wood boards. This 12/12 window has original panes, too. Taken at the Eureka Schoolhouse in Springfield, Vermont - a State Historic Site.

A Life in the Trades: October 2010

Series introduction. October 2009. November 2009. December 2009. January 2010. February 2010. March 2010. April 2010. May 2010. June 2010. September 2010.

By Nicholas Bogosian

I have now reached the fifth quarter of my training at the Building Preservation & Restoration Program of Belmont Technical College.  That’s five out of seven.  I started this series at the beginning of my training with the intent of highlighting the trades function in the preservation of our built environment and as an open scrapbook of my experiences through the duration of the training.  I am happy to say that the zeal I came into the process with hasn’t wavered a bit.  Now the time has come to begin seeking out internships and think more forwardly about my place in the field.

Sistering rafters in historic outshed until necessary structural repairs can be made. Photo courtesy of Nicholas Bogosian.

It’s a true challenge to define preservation, let alone decide where you fit into its expansive net.  Preservation is not something most of us hear about growing up, or see on career placement tests.  While attending a plaster demonstration at Sarel Venter’s plaster lab in Grafton, WV last Spring, he asked us what we wanted to do when we graduated.  A few of us only had vague ideas:  “I’m not really sure” to which he replied, “That’s probably a good thing.”

Renata Bruza working iron over an anvil in Metals class. Photo courtesy of Nicholas Bogosian.

I know, like most of my peers, that I find satisfaction in making an unhealthy structure healthy again.  I enjoy even more knowing why it is healthier and why it was unhealthy in the first place.  This maintenance ethic may seem concrete in our minds, but I bet most of the world doesn’t view maintenance as a technical skill, a science, or an art (or even a priority).  The beauty of the craftsman is not only their ability to work with their hands – truthfully, their handiwork would have no value without the intellectual understanding of the materials they are working with.

Windows & Doors class repairing windows at an 1880s one-room schoolhouse in Pleasant Hill, Ohio. Photo courtesy of Nicholas Bogosian.

It is not enough, however, to be proficient in the historic building trades (i.e. plastering, blacksmithing, masonry, timber framing, faux painting, etc.)  A modern preservationist (or conservator, or preservation technician) must take their knowledge of these highly specialized professions and view the building holistically and understand the process of deterioration.  What good is a plasterer’s handiwork in repairing cracks in a wall when significant differential settlement is taking place in the building?  A preservation-sensitive structural engineer would do more good.

Sandstone erosion due to face-bedding & improper Portland cement mortaring. Photo courtesy of Nicholas Bogosian.

At this point, if I had to describe my dream job in preservation it would be something like working for an Architectural Conservation firm that not only carries out laboratory testing of materials, but also completes the process of sensitive repairs.
I love the resolute and grounded quality of stone and the inspiring durability of wood and the careful chemistry of arranging a sophisticated three part plaster.  I love the investigation, the clues:  the face of a sandstone block exfoliating like pages of a book, the cambium layers of a hand-hewn joist letting go and falling to the ground, the way the paint bubbles on the clapboards during a heavy rainstorm.

Removing a corroded cast iron grate for repairs in metal lab. Photo courtesy of Nicholas Bogosian.

So I suppose the conservationist shares in the same delight of the chemist, in knowing something at its atomic and molecular level – to know something through and through.

A Life in the Trades: March 2010

Series introduction. October 2009. November 2009. December 2009. January 2010. February 2010.

By Nicholas Bogosian

In the Materials Science of Wood class at BPR this quarter, we’ve been assigned six projects: Bracket reconstruction, wood epoxy repair, dutchman repair, lathe turning, wood carving, and parquetry design. The focus of the course is to get us fully acquainted with the character of wood, the tools by which we manipulate it, its common deterioration mechanisms, and basic methods by which to conserve, preserve, and restore it. The nature of the more significant projects (bracket & parquetry) lead us into aspects of fine wood working, whereas the separate Building Carpentry class focuses on wood as a framing material in a historic context. The Building Pathology component of the program, in turn, reinforces the study of deterioration and stabilization of materials such as wood.

This month I documented the process of my bracket reconstruction. “Case by case basis” is a phrase we hear all the time in our classes. The goal of the program is to equip us with an index of options. Much like a doctor upon hearing her patient’s symptoms, she must catalogue in her brain potential causes and possible remedies. If she is a good doctor, the cause of the symptoms will be considered the first priority to solve. In the field of preservation we also have other variables dictating our actions: time, the vision of the owner of the object/property (are we restoring to mid-18th century or are we leaving “as is” and conserving what we have only?), and the budget of the owner.

In the context of my bracket reconstruction I pretty much assumed the vision of the project as a restoration of sorts. I also assumed that if any problem exists that was a direct contributor to the bracket’s complete failure/disappearance, that it has been investigated and fixed. Whereas dutchman and wood epoxy repairs are repairing a wooden object and retaining as much original fabric as possible, a reconstruction effort is dealing with recreating an object based on documentation of what used to be. Perhaps only a couple of the brackets remain. Perhaps none exist at all. If it fits the parameters of the project’s vision, the reconstruction process may begin once all proper documentation and research has been accomplished.

All documentation and research aside, I began at the drafting table rendering the bracket in detail. Generally, all profiles need to be explored. I learned very quickly in the construction process, that this time spent at the drafting table is the most difficult and most important part of the entire process. Every dentil, every depth, every component of the design must be understood in your mind and explained on the paper. If you can see its multiple layers coming together accurately, then the construction process will run much more smoothly.

A bracket’s width is determined by the height of the individual boards that compose it. A process of glue lamination will give us our bulk. Once the height of these individual boards is determined, they are planed down to the correct size. In our case we’re dealing with rough-cut Poplar. Rough-cut boards are not necessarily the dimension we need and may show signs of crooking, cupping, and bowing.

_______________________________________________________________________

A note on dimensional lumber…

The most cost-effective and resourceful method of dimensioning lumber in a lumber mill is the plain sawing method.

Courtesy of Nicholas Bogosian.

The downside to plain sawn planks is the nature of the growth rings in relation to moisture evaporation processes. They are more prone to warping. The quarter sawn method produces a more durable cut of wood that is less prone to this warping.

Courtesy of Nicholas Bogosian.

In our case, the boards are roughly plain sawn. Each face grain is planed down to the correct level in the planer which also provides a finer finish. The purpose of the planer is to give plumb dimensions on these face grains as well.

Board planer. Courtesy of Nicholas Bogosian.

After the face grains have been planed, one edge grain per board must be joined in the joiner to remove any imperfections such as crooking. Once a single edge grain side has been joined, the other side must be trimmed off on a table saw setting the recently joined side against the fence. End grain sides may be simply trimmed on a chop saw. Now the board should be square on all sides.

______________________________________________________________________

After all individual boards have their proper height, the edges are glued together with a Poly Vinyl Acetate adhesive (i.e. white glue and wood(yellow) glue). These adhesives are water based and work best on porous materials. F-clamps keep the boards in place in the drying process.

Courtesy of Nicholas Bogosian.

It is best to arrange the boards in alternating end grain patterns. Should further warping occur, ideally the warpings will oppose each other and cancel themselves out.

Courtesy of Nicholas Bogosian.

After the boards have dried, the process of tracing the side profile of the bracket onto these begins. I used a simple carbon paper. I needed to trace seven profiles, as seven profiles would create the width of my bracket once placed side by side.

Courtesy of Nicholas Bogosian.

Once the individual profiles have been cut using a scroll saw, they are aligned together and once again glued in the final lamination process.

Courtesy of Nicholas Bogosian.

Left to dry. Courtesy of Nicholas Bogosian.

There might be irregular edges along this profile after the lamination process. Using a bobbin sander, the bulk of the bracket may be sanded down to a smooth and regular shape.

One component of my bracket was a turned rosette. After a block is attached to the end of the lathe, using various turning speeds and different turning chisels, my contoured shape was created. These discs were then glued to both sides of the bracket.

Courtesy of Nicholas Bogosian.

In creating the decorative scrolls which flank the bracket, a 3-D carved depth illusion is given by joining two pieces: one creating the elevated portion and the other providing the backing.

Prior to cutting. Courtesy of Nicholas Bogosian.

Using a scroll saw once again, the piece is “carved out.” Once the two pieces are glued together, a simple dremel tool helped to establish even more depths in the scrolls. These too were glued to each side of the bracket.

The last decorative element of the bracket was creating the partial architrave on the top and base consisting of a simple cornice and dentil run. It is worth noting that options for replicating historic and even rare molding profiles must be indexed as well for future “case by case” assignments. Options can run the gamut from locating rare router bits, creating custom router bits, or even doing a combination of routing with existing bits in one’s collection and hand planing/shaping. All decorative trim and molding must be carefully tagged, photographed, and organized if detached from a structure in a preservation endeavor.

Once a matching router bit was found, the cornice was shaped using the router. Various miter joints must be cut with miter saws to create the corners of the cornice.

Courtesy of Nicholas Bogosian.

Dentil blocks can be created with a few different methods. The most time-efficient method is using a dado blade on a common table saw. The dado blade is intended to carve out the wood. The width of this uniform shape is determined by placing spacers in between two saw blades and based on the height of the saw blade. A jig is created for the assignment if not already in your jig collection. By simply passing the dentil plank inside a jig over the dado blade, the spacing in between the dentils is created accurately.

And…..I’m finished.

Courtesy of Nicholas Bogosian.

Courtesy of Nicholas Bogosian.