Preservation Photos #167

The Bartonsville Covered Bridge under construction, December 2012.

The Bartonsville Covered Bridge under construction, December 2012.

On Saturday January 26, 2013, the reconstructed Bartonsville Covered Bridge opened for traffic. The community gathered in the chilly but sunny morning hours for a ceremony and then at a local restaurant to enjoy the long awaited occasion. The Bartonsville Covered Bridge is the famous bridge from Tropical Storm Irene, which washed downstream and was filmed by local resident Sue Hammond. Here’s the VPR story.

Advertisement

Reconstruction and the National Register

Buildings, structures, objects, sites, and districts are nominated to the National Register of Historic Places based their significance and integrity (of location, design, setting, materials, workmanship, feeling, and association) pertaining to 1 or more, of 4, criteria, which are:

A. That are associated with events that have made a significant contribution to the broad patterns of our history; or

B. That are associated with the lives of significant persons in or past; or

C. That embody the distinctive characteristics of a type, period, or method of construction, or that represent the work of a master, or that possess high artistic values, or that represent a significant and distinguishable entity whose components may lack individual distinction; or

D. That have yielded or may be likely to yield, information important in history or prehistory.

However, some properties do not fit these categories, for which there are criteria considerations:

a. A religious property deriving primary significance from architectural or artistic distinction or historical importance; or

b. A building or structure removed from its original location but which is primarily significant for architectural value, or which is the surviving structure most importantly associated with a historic person or event; or

c. A birthplace or grave of a historical figure of outstanding importance if there is no appropriate site or building associated with his or her productive life; or

d. A cemetery that derives its primary importance from graves of persons of transcendent importance, from age, from distinctive design features, or from association with historic events; or

e. A reconstructed building when accurately executed in a suitable environment and presented in a dignified manner as part of a restoration master plan, and when no other building or structure with the same association has survived; or

f. A property primarily commemorative in intent if design, age, tradition, or symbolic value has invested it with its own exceptional significance; or

g. A property achieving significance within the past 50 years if it is of exceptional importance.

Regardless of how you are nominating a property to the National Register, you must include a narrative description and a statement of significance, essentially making a case for the property. When you are nominating under one of the criteria considerations as well (a-g above) you must have a separate statement in which to discuss your argument.

I was thinking about the National Register eligibility of the Ferrisburgh Grange Hall in Ferrisburgh, VT (see comment by Sabra Smith) while at a square dance there this past weekend. The back story necessary for this is that the Ferrisburgh Grange Hall was just about to undergo a large restoration project in 2005, when it was burned to the ground by arson. Rather than start with a brand new building or something else, the town elected to move forward with a full-scale reconstruction. (Note: there is a much more detailed version of this story here and here.)

Ferrisburgh Grange Hall, after arson, 2005. click for original image.

While sitting on the balcony/second floor of the grange hall, I began to wonder if this building were on the National Register. (I do not know – do you?) And I wondered if it should be. By the definition, “accurately executed in a suitable environment…” it is appropriate. Though this building is not yet beyond the 50 year mark. (Note: there is not a 50 year rule. It is more of a guideline, but if less than 50 years it needs to be explained.)

However, while the building is beautiful, and accurate, and thoughtfully built… I do not feel as though I’m in a historic space when I’m in the building. The exterior can fool you for a minute or so as a historic building since it is an accurate restoration, but the inside is shiny, and incredibly clean and sharp, and just has the feeling of a new, modern, perhaps trendy building. I don’t mean that historically significant buildings have to be run down with peeling paint and scuffed floors, but feeling is such an important part; it’s the point and joy of standing in a historic building and sensing its history. Do you know what I mean?

But how you can deny the importance of this building? You cannot. And a lack of a National Register nomination doesn’t necessarily deny importance, but it indicates that the criteria do not fit this building at this time. So maybe this is the sort of building that will need at least 50 years in which to live and breathe with the community and to create its own significance, beyond that of a restoration.

I haven’t completely made up my mind. What do you think? Feel free to do disagree, of course.

The reconstructed Ferrisburgh Grange Hall, now the Town Hall. Click for original image.

 

A Life in the Trades: March 2010

Series introduction. October 2009. November 2009. December 2009. January 2010. February 2010.

By Nicholas Bogosian

In the Materials Science of Wood class at BPR this quarter, we’ve been assigned six projects: Bracket reconstruction, wood epoxy repair, dutchman repair, lathe turning, wood carving, and parquetry design. The focus of the course is to get us fully acquainted with the character of wood, the tools by which we manipulate it, its common deterioration mechanisms, and basic methods by which to conserve, preserve, and restore it. The nature of the more significant projects (bracket & parquetry) lead us into aspects of fine wood working, whereas the separate Building Carpentry class focuses on wood as a framing material in a historic context. The Building Pathology component of the program, in turn, reinforces the study of deterioration and stabilization of materials such as wood.

This month I documented the process of my bracket reconstruction. “Case by case basis” is a phrase we hear all the time in our classes. The goal of the program is to equip us with an index of options. Much like a doctor upon hearing her patient’s symptoms, she must catalogue in her brain potential causes and possible remedies. If she is a good doctor, the cause of the symptoms will be considered the first priority to solve. In the field of preservation we also have other variables dictating our actions: time, the vision of the owner of the object/property (are we restoring to mid-18th century or are we leaving “as is” and conserving what we have only?), and the budget of the owner.

In the context of my bracket reconstruction I pretty much assumed the vision of the project as a restoration of sorts. I also assumed that if any problem exists that was a direct contributor to the bracket’s complete failure/disappearance, that it has been investigated and fixed. Whereas dutchman and wood epoxy repairs are repairing a wooden object and retaining as much original fabric as possible, a reconstruction effort is dealing with recreating an object based on documentation of what used to be. Perhaps only a couple of the brackets remain. Perhaps none exist at all. If it fits the parameters of the project’s vision, the reconstruction process may begin once all proper documentation and research has been accomplished.

All documentation and research aside, I began at the drafting table rendering the bracket in detail. Generally, all profiles need to be explored. I learned very quickly in the construction process, that this time spent at the drafting table is the most difficult and most important part of the entire process. Every dentil, every depth, every component of the design must be understood in your mind and explained on the paper. If you can see its multiple layers coming together accurately, then the construction process will run much more smoothly.

A bracket’s width is determined by the height of the individual boards that compose it. A process of glue lamination will give us our bulk. Once the height of these individual boards is determined, they are planed down to the correct size. In our case we’re dealing with rough-cut Poplar. Rough-cut boards are not necessarily the dimension we need and may show signs of crooking, cupping, and bowing.

_______________________________________________________________________

A note on dimensional lumber…

The most cost-effective and resourceful method of dimensioning lumber in a lumber mill is the plain sawing method.

Courtesy of Nicholas Bogosian.

The downside to plain sawn planks is the nature of the growth rings in relation to moisture evaporation processes. They are more prone to warping. The quarter sawn method produces a more durable cut of wood that is less prone to this warping.

Courtesy of Nicholas Bogosian.

In our case, the boards are roughly plain sawn. Each face grain is planed down to the correct level in the planer which also provides a finer finish. The purpose of the planer is to give plumb dimensions on these face grains as well.

Board planer. Courtesy of Nicholas Bogosian.

After the face grains have been planed, one edge grain per board must be joined in the joiner to remove any imperfections such as crooking. Once a single edge grain side has been joined, the other side must be trimmed off on a table saw setting the recently joined side against the fence. End grain sides may be simply trimmed on a chop saw. Now the board should be square on all sides.

______________________________________________________________________

After all individual boards have their proper height, the edges are glued together with a Poly Vinyl Acetate adhesive (i.e. white glue and wood(yellow) glue). These adhesives are water based and work best on porous materials. F-clamps keep the boards in place in the drying process.

Courtesy of Nicholas Bogosian.

It is best to arrange the boards in alternating end grain patterns. Should further warping occur, ideally the warpings will oppose each other and cancel themselves out.

Courtesy of Nicholas Bogosian.

After the boards have dried, the process of tracing the side profile of the bracket onto these begins. I used a simple carbon paper. I needed to trace seven profiles, as seven profiles would create the width of my bracket once placed side by side.

Courtesy of Nicholas Bogosian.

Once the individual profiles have been cut using a scroll saw, they are aligned together and once again glued in the final lamination process.

Courtesy of Nicholas Bogosian.

Left to dry. Courtesy of Nicholas Bogosian.

There might be irregular edges along this profile after the lamination process. Using a bobbin sander, the bulk of the bracket may be sanded down to a smooth and regular shape.

One component of my bracket was a turned rosette. After a block is attached to the end of the lathe, using various turning speeds and different turning chisels, my contoured shape was created. These discs were then glued to both sides of the bracket.

Courtesy of Nicholas Bogosian.

In creating the decorative scrolls which flank the bracket, a 3-D carved depth illusion is given by joining two pieces: one creating the elevated portion and the other providing the backing.

Prior to cutting. Courtesy of Nicholas Bogosian.

Using a scroll saw once again, the piece is “carved out.” Once the two pieces are glued together, a simple dremel tool helped to establish even more depths in the scrolls. These too were glued to each side of the bracket.

The last decorative element of the bracket was creating the partial architrave on the top and base consisting of a simple cornice and dentil run. It is worth noting that options for replicating historic and even rare molding profiles must be indexed as well for future “case by case” assignments. Options can run the gamut from locating rare router bits, creating custom router bits, or even doing a combination of routing with existing bits in one’s collection and hand planing/shaping. All decorative trim and molding must be carefully tagged, photographed, and organized if detached from a structure in a preservation endeavor.

Once a matching router bit was found, the cornice was shaped using the router. Various miter joints must be cut with miter saws to create the corners of the cornice.

Courtesy of Nicholas Bogosian.

Dentil blocks can be created with a few different methods. The most time-efficient method is using a dado blade on a common table saw. The dado blade is intended to carve out the wood. The width of this uniform shape is determined by placing spacers in between two saw blades and based on the height of the saw blade. A jig is created for the assignment if not already in your jig collection. By simply passing the dentil plank inside a jig over the dado blade, the spacing in between the dentils is created accurately.

And…..I’m finished.

Courtesy of Nicholas Bogosian.

Courtesy of Nicholas Bogosian.